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ABSTRACT 

 
Online adaption of visual tracking is a significant 

strategy to achieve good tracking performance since the 
appearance of the object target varies all along with the 
sequence. However, directly using the tracking results of 
previous frames to update the model will cause drifting, 
resulting in tracking failure. We propose a task-guided 
generative adversarial network (GAN), named TGGAN, to 
learn the general appearance distribution that a target may 
undergo through a sequence. Then the online adaption is 
simply to select templates from the images that are generated 
from the ground truth template in the first frame and a set of 
random vectors by the generator. This strategy helps the 
model alleviate drifting while still obtaining adaptivity. 
Tracking is treated as a template matching problem under a 
proposed Siamese matching network structure. Experiments 
show the effectiveness of the proposed online adaption 
strategy and the Siamese matching network. 
 

Index Terms— Visual tracking, online adaption, 
Siamese network, template matching, deep learning 
 

1. INTRODUCTION 
 
Online adaption plays an important role in visual tracking 
since only the ground truth in the first frame is given. The 
tracker is supposed to locate the target position in the 
subsequent frame of the sequence accurately, while the target 
may undergoes occlusion, illumination change, deformation, 
background clutter, scale change, and so on. 
        To deal with various appearance changes, online 
adaption is adopted to visual tracking. Grabner et al. [1] use 
online boosting to select features and update the weights of 
weak classifiers using the previous tracking results. Babenko 
et al. [2] adopt Multiple Instance Learning (MIL) to update 
the model while alleviating the drifting problem. Zhou et al. 
[3] incorporates a deep neural network with an on-line 
AdaBoost framework to dynamically update the classifiers. 
Guo et al. [4] update the weights of each base matcher and 
the network parameters after each tracking result. The sparse 
representation based trackers [5,6] use the current tracking 
patch to replace the older template patch. The correlation 
filter based trackers [7,8] use linear interpolation to update 
their filters after each frame. However, all these online 

adapting strategies suffer from the problem of self-learning, 
which means when updated by wrongly labelled samples, the 
trackers may degrade permanently and drift away. 
        Siamese convolutional neural networks [9-12] are 
applied to visual tracking in recent years. Siamese networks 
have advantageous abilities to learn general matching 
functions. Methods in [9-11] show that even with a fixed 
template (the ground truth patch in the first frame), the 
trackers can achieve state-of-the-art tracking performance. 
        To avoid drift problem and still benefit from online 
adaption, we use conditional GAN architecture [13] to learn 
the general appearance distribution that a target may undergo 
through a sequence. Then in the tracking phase, we use the 
learnt generator of the GAN to generate the target templates. 
The generator takes the ground truth patch in the first frame 
and random vectors as inputs, and outputs the generated 
target templates. The generated templates are pulled by the 
ground truth patch, so they will not drift away.  Meanwhile, 
the generated templates can simulate the possible appearance 
changes that a target may undergo through a sequence. When 
tracking, we select the generated templates that best suit the 
current target appearance. By these strategies, we can update 
the target templates online while avoiding drifting. 

In this work, we first propose a Siamese matching 
network as illustrated in Fig. 1 to match the candidates with 
target templates. The Siamese matching network takes 
advantages of both low-level local information and high-level 
semantic information. Then we propose a task-guided GAN 
to learn a generator modeling the general appearance 
distribution that a target may undergo through a sequence. 
We use the learnt generator of TGGAN to generate templates 
and select those best suit the current target appearance, thus 
obtaining online adaption and boosting tracking performance. 
To our knowledge, this is the first work trying to learn the 
general video target appearance distribution using GAN. 
Experiments on the well-known OTB benchmark [14] show 
that our tracker outperforms many state-of-the-art trackers  
 

2. TASK-GUIDED GAN (TGGAN) 
 
In this section, we describe our TGGAN in details. The 
TGGAN includes a generator network and a discriminator 
network which consists of an adversarial branch and a task-
guided branch. The task-guided branch (Siamese matching 
network) must be well trained in advance to guide the 



learning of the generator network. We alternatively train the 
generator network and the adversarial branch of the 
discriminator network until the task-guided branch cannot tell 
the generated image is target or not. 
 
2.1. Siamese Matching Network 
 
The Siamese matching network is designed to learn a general 
similarity function between two images. As shown in Fig. 1, 
we concatenate the output feature of conv2, conv3, and conv4 
to get the final feature which contains both low-level features 
to capture intraclass variations and high-level features to 
obtain semantic information. Note that we do not apply any 
global pooling or flattening operations to get single global 
feature vectors. Instead, we do the matching with every 1 ×
1 × 768  feature vector extracted from each 2-D spatial 
location. This indicates that the model performs at the scale 
of local patches. We first extract the feature along the feature 
channel. Then we normalize the extracted features by L2 
normalization. Let 𝑓௜,௝

ଵ  and 𝑓௜,௝
ଶ  denote the normalized features 

of the two Siamese branches, respectively, where (𝑖, 𝑗) 
denotes the feature vector position in the concatenated feature. 

Then the matching score of the two features is simply given 
as, 

𝑚௜,௝ = 𝑓௜,௝
ଵ ୘

 𝑓௜,௝
ଶ , (1) 

where the superscript T represents transposition. Since the 
use of L2 normalization, the matching score 𝑚௜,௝ ranges from 
-1 to 1.  

Let 𝑝 be the label of the input pair. If the two inputs are 
of the same object, we consider them as positive pair, then 
𝑝 = 1. Otherwise, we consider them as negative pair and 𝑝 =
0 . We adopt the margin contrastive loss [15] as the loss 
function of our Siamese matching network, 

ℒ௜,௝ = 𝑝(1 − 𝑚௜,௝)ଶ + (1 − 𝑝)max (0, 𝑚௜,௝ − 𝜖)ଶ, (2) 

where 𝜖 is the maximum margin that the scores of negative 
samples should satisfy. In our method, we set 𝜖 as 0 to make 
all the matching scores of negative pairs no more than 0. 
Because randomly picked two patches are uncorrelated in 
most cases, resulting in a zero matching value. The final loss 
of the Siamese matching network is the mean of the losses of 
all feature vectors, ℒ௦(𝐷௦(𝑥ଵ, 𝑥ଶ)) = ∑ ℒ௜,௝௜,௝ 𝑁⁄ , where 𝑁 is 
the number of feature vectors, 𝐷௦  means the Siamese 
matching network, and (𝑥ଵ, 𝑥ଶ) are the input sample pair of 
𝐷௦. 
        To obtain training samples, we randomly pick two 
images from a sequence. Then we extract the ground truth 
patch in one image as the template and extract patches in the 
other frame around the ground truth patch as candidates. We 
calculate IoU (intersection-over-union) rate between the 
candidate’s bounding box and the ground truth patch’s 
bounding box. Those candidate patches having IoU overlap 
rates with the ground truth larger than 0.75, we consider them 
as positive. While those patches with IoU overlap rates less 
than 0.4, we consider them as negative. The network is 
trained using the Adam [15] algorithm with each mini-batch 
consisting of 32 positive sample pairs and 96 negative sample 
pairs. We train the network 15 epochs and each epoch 
consists of 6.25𝐾  iterations, where 𝐾  is the number of 
training sequences. The initial learning rate is 0.001 and 
multiplied by 0.6 after each epoch.  
        Note that once Siamese matching network has finished 
the training, it should not be updated anymore when training 
TGGAN. 
 
2.2. TGGAN 
 
The goal of our TGGAN is to learn a generator that simulates 
the distribution of the target appearances that may undergo 
through a sequence. The inputs of TGGAN are a target 
template patch and a random noise vector. Thus we adopt the 
conditional GANs [13] framework. The objective of a 
conditional GAN (cGAN) is given as, 
ℒ௖ீ஺ே(𝐺, 𝐷௔) = 𝔼௫,௬~௣೏ೌ೟ೌ(௫,௬)[log 𝐷௔(𝑥, 𝑦)] + 

   𝔼௫~௣೏ೌ೟ೌ(௫),௭~௣೥(௭)[log(1 − 𝐷௔(𝑥, 𝐺(𝑥, 𝑧))], 
(3) 

 
Fig. 1. The proposed task-guided GAN. ‘conv’, ‘deconv’ and 
‘fc’ stand for convolution, deconvolution (transposed 
convolution), and fully-connected layers, respectively. ‘z’ 
represents the random noise vector. Numbers in square 
brackets are kernel size, number of outputs, and stride, 
respectively. Note that the two branches of Siamese network 
share weights. 
  



where 𝐺 represents the generator that learns to map data 𝑥 
from distribution 𝑝ௗ௔௧௔(𝑥)  and 𝑧  from noise distribution 
𝑝௭(𝑧)  to the distribution over 𝑦 , and 𝐷௔  means the 
adversarial branch. Eq. (3) only includes the adversarial 
branch of the discriminator. However, it is well-known that 
forcing a model to perform additional tasks will improve the 
performance on the original task [16,17] and also we want the 
generated images to be qualified for the matching task. Thus, 
we guide the generator by adding an additional matching task 
of minimizing the Siamese loss, 

ℒ௦௜௔௠(𝐺, 𝐷௦) =  ℒ௦(𝐷௦(𝑥, 𝐺(𝑥, 𝑧))) (4) 

Then the final objective is 
𝐺∗ = arg min

ீ
max

஽ೌ

ℒ௖ீ஺ே(𝐺, 𝐷௔) + ℒ௦௜௔௠(𝐺, 𝐷௦) (5) 

We alternatively train the generator network and the 
adversarial branch of the discriminator network. The 
adversarial branch is to identify the input pair is real pair or 
fake pair. We randomly select two frames from one sequence 
and crop the ground truth patches in them, forming the real 
pair. For the fake pair, we crop the ground truth patch of a 
frame and pass it with a 1024-D random vector through the 
generator to obtain a generated patch. The generated patch 
together with the input patch form the fake pair. We use 
binary cross-entropy loss function for the adversarial branch. 
Each mini-batch has 64 sample pairs. The numbers of real 
pairs and fake pairs are equal. For the training of generator, 
we use losses of both adversarial branch and Siamese 
matching branch. Each mini-batch has 64 sample pairs for 
each branch. For the Siamese branch, the ratio of positive 
pairs and negative pairs is 1:1. We use Adam [18] algorithm 
with learning rate 0.0002 as described in appendix A of 
ACGAN paper [17]. The network is trained for 10000 
iterations when we find that the task-guided branch cannot 
distinguish the generated patches from the real ones. 
 
2.3. Implementation Details 
 
Fig. 1 illustrates the network architecture of the proposed 
TGGAN. We add batch normalization [19] after all conv 
layers except for the first conv layer in the generator and the 
first conv layer in the adversarial branch [20]. We use leaky 
ReLUs [21] with slope 0.2 as the activation function of each 
conv layer except for the output layer of the generator where 
tanh function is used. After the last conv layer of the 
generator, a full-connected layer is applied to map to a 1 
dimensional output, followed by sigmoid function. 
 

3. TRACKING 
 
In every frame, we draw 𝐷 (= 450) candidate samples from 

the image frame according to the state vector Q௧ = ൣ𝑙௫, 𝑙௬ , 𝑠൧
୘
, 

where subscript 𝑡 represents the frame number, and 𝑙௫, 𝑙௬ , 𝑠 
denote 𝑥, 𝑦 translations and scale variation, respectively. The 
state vector is modeled by the Gaussian distribution, i.e., 
𝑁(Q௧; Q௧ିଵ, φ) , where Q௧ିଵ  is the estimated target state 

vector in the last frame, and φ is a diagonal covariance matrix. 
And the diagonal elements are (0.25𝑟ଶ, 0.25𝑟ଶ, 0.09), where 
𝑟 is the mean of current target height and width. Extracting 
the patch according to the state vectors, we can get a 
candidate set C = {𝑐ଵ, 𝑐ଶ, … , 𝑐஽}.  

We remain a generated template set T௚ = {𝑡ଵ
୥

, 𝑡ଶ
୥

, … , 𝑡௄
୥

} 
which has 𝐾(= 10) templates. A coarse-to-fine strategy is 
applied in finding the best candidate. In each frame, we first 
pass the candidates and the ground truth template in the first 
frame through the Siamese network. The matching score is 
given as, 

𝑀(𝑡, 𝑐ௗ) = ∑ 𝑚௜,௝௜,௝ 𝑁⁄ ,  (6) 

where 𝑡 is the ground truth patch in the first frame and 𝑑 ∈
{1,2, … , 𝐷} .Then we pick out 𝐵(= 50)  candidates which 
have the highest matching scores, forming the coarsely 
selected set C௦ = {𝑐ଵ

ୱ, 𝑐ଶ
ୱ, … , 𝑐஻

ୱ } . Every candidate in C௦  is 
matching to every generated template in T௚ . The final 
matching score of 𝑐௕

ୱ is given by,  

𝑀௙௜௡௘(𝑡, T௚, 𝑐௕
ୱ) = σ𝑀(𝑡, 𝑐௕

ୱ) + 𝜌 ∑ 𝑀൫𝑡௞
୥

, 𝑐௕
ୱ൯௞ 𝐾⁄ ,  (7) 

where 𝑏 ∈ {1,2, … , 𝐵} . Parameter σ  and 𝜌  balance the 
contribution of the ground truth template in the first frame 
and the generated templates. In our case, we set both values 
to be 0.5. The best candidate is picked out by, 

𝑐̂ = argmax
௖್

౩
𝑀௙௜௡௘(𝑡, T௚ , 𝑐௕

ୱ).  (8) 

After estimation in each frame, we use the first ground 
truth patch and 50 random vectors as inputs of the generator 
to generate 50 patches. Then we choose 2 of the patches 
which have the highest matching scores with current 
estimated target to replace the two in T௚  which have the 
lowest matching scores with current estimated target. 
 

4. EXPERIMENTS 
 
This work is implemented using Keras toolbox [22] and 
performed on a single NVIDIA GeForce GTX Titan X GPU. 
The tracker runs at 3.1 fps. We use sequences in ALOV [23] 
and VOT2015 [24] to train the model and evaluate it on 
OTB50 [14] and OTB100 [14]. The OTB50 is a more 
challenging subset of OTB100 and is different from the 
OTB2013 [25]. Note that we pick out the sequences that both 
exist in the training data sets and test data sets. For convictive 
evaluation, we do not use them to train the model. Our tracker 
is compared with eight state-of-the-art trackers, including 
CFNet_conv3 [12], SINT+ [11], ACFN [26], staple [27], 
CNN-SVM [28], SiamFC3s [10], MEEM [29], and DSST 
[30]. The CFNet_conv3 tracker gets the best overall 
performance in all the variants of CFNet [12]. The SINT+ 
tracker is an improved version of SINT [11]. It uses sampling 
strategy in [31] and optical flow to filter out bad candidates. 
For ablation study, we compare the proposed TGGAN tracker 
with its variant which only uses the template from the first 
frame and does not use the generated online adaptive 
templates. We name this variant FixedT. The templates and 



candidates are all resize to a fixed size 32 × 32 . We use 
success plots and precision plots of OPE [14] to evaluate our 
tracker as illustrated in Fig. 2. The legend in the precision 
plots reports the percentage of frames whose distance 
precision is below 20 pixels. The legend in the success plots 
shows the area-under-curve (AUC) scores of the success plots. 
        We can see that our proposed TGGAN achieves the best 
performance in terms of both precision score and AUC score 
on both OTB50 dataset and OTB100 dataset. It is worth 
noting that the FixedT tracker performs the second best in 
terms of the AUC score. This indicates the effectiveness of 
our Siamese matching network architecture. The output 
features obtain both low-level local information and high-
level semantic information by concatenating the conv 
features of conv2, conv3, and conv4 layers. Meanwhile, we 

separately match the features from different location. This 
local patch based operation helps the model achieve 
robustness. In the precision plots, the FixedT performs worse 
than TGGAN and some other trackers. This verifies the 
effectiveness of the generated templates improving the 
tracking accuracy. 
        Table 1 illustrates the AUC score of different trackers in 
terms of different tracking attributes on the OTB100 dataset. 
The attributes include occlusion (OCC), deformation (DEF), 
fast motion (FM), illumination variation (IV), scale variation 
(SV), motion blur (MB), background clutters (BC), low 
resolution (LR), in-plane rotation (IPR), out-plane rotation 
(OPR), and out-of-view (OV). In eight of the eleven attributes 
our tracker achieves the best AUC scores. In IV, BC, and IPR, 
our tracker obtains the second best AUC scores. The overall 
performance indicates that the proposed TGGAN tracker can 
deal with various challenging tracking scenarios. 
 

5. CONCLUSION 
 
In this paper, we propose a robust Siamese matching network 
and a task-guided GAN for visual tracking. The proposed 
Siamese network takes advantages of both low-level local 
information and high-level semantic information. Meanwhile, 
the matching is performed at the scale of local patches for 
robustness. The task-guided GAN network tries to model the 
appearance distribution that a target may undergo through a 
sequence. After the training of TGGAN, we use the generator 
to generate templates that best suit the current target 
appearance. Since the templates are generated from the 
ground truth template in the first frame, they are robust and 
can alleviate the drift problem, while still catching adaptivity. 
Numerous experiments show the effectiveness of the 
proposed Siamese matching network and the task-guided 
GAN. 
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Fig. 2.  First row and second row are the precision plots and 
success plots of OTB50 and OTB100, respectively. The 
legend in the success plots reports the AUC scores. The 
legend in the precision plots reports the percentage of frames 
within the threshold of 20 pixels. 
  

Table 1. AUC score of different tracking methods in terms of different attributes on the OTB100 dataset. The best three 
results are shown in red, blue, and green fonts. 

Attribute DSST MEEM 
CNN-
SVM 

ACFN staple 
SiamF-

C3s 
CFNet_
conv3 

FixedT SINT+ TGGAN 

OCC 0.449 0.508 0.514 0.537 0.545 0.547 0.526 0.582 0.582 0.589 
DEF 0.415 0.492 0.547 0.533 0.552 0.510 0.524 0.587 0.558 0.597 
FM 0.447 0.542 0.546 0.562 0.537 0.568 0.555 0.581 0.570 0.609 
IV 0.556 0.522 0.537 0.567 0.596 0.574 0.542 0.605 0.636 0.614 
SV 0.466 0.472 0.489 0.547 0.522 0.556 0.546 0.599 0.565 0.622 
MB 0.469 0.556 0.578 0.562 0.546 0.550 0.540 0.591 0.591 0.630 
BC 0.523 0.519 0.548 0.573 0.574 0.523 0.561 0.555 0.590 0.576 
LR 0.383 0.364 0.403 0.425 0.418 0.592 0.552 0.536 0.521 0.594 
IPR 0.502 0.529 0.548 0.543 0.552 0.557 0.571 0.560 0.599 0.576 
OPR 0.470 0.525 0.548 0.543 0.534 0.558 0.556 0.583 0.598 0.603 
OV 0.386 0.488 0.488 0.496 0.481 0.506 0.456 0.544 0.553 0.582 

Overall 0.513 0.530 0.554 0.573 0.581 0.582 0.589 0.606 0.592 0.618 
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