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ABSTRACT

Online adaption of visual tracking is a significant
strategy to achieve good tracking performance since the
appearance of the object target varies all along with the
sequence. However, directly using the tracking results of
previous frames to update the model will cause drifting,
resulting in tracking failure. We propose a task-guided
generative adversarial network (GAN), named TGGAN, to
learn the general appearance distribution that a target may
undergo through a sequence. Then the online adaption is
simply to select templates from the images that are generated
from the ground truth template in the first frame and a set of
random vectors by the generator. This strategy helps the
model alleviate drifting while still obtaining adaptivity.
Tracking is treated as a template matching problem under a
proposed Siamese matching network structure. Experiments
show the effectiveness of the proposed online adaption
strategy and the Siamese matching network.

Index Terms— Visual tracking, online adaption,
Siamese network, template matching, deep learning

1. INTRODUCTION

Online adaption plays an important role in visual tracking
since only the ground truth in the first frame is given. The
tracker is supposed to locate the target position in the
subsequent frame of the sequence accurately, while the target
may undergoes occlusion, illumination change, deformation,
background clutter, scale change, and so on.

To deal with various appearance changes, online
adaption is adopted to visual tracking. Grabner et al. [1] use
online boosting to select features and update the weights of
weak classifiers using the previous tracking results. Babenko
et al. [2] adopt Multiple Instance Learning (MIL) to update
the model while alleviating the drifting problem. Zhou ef al.
[3] incorporates a deep neural network with an on-line
AdaBoost framework to dynamically update the classifiers.
Guo et al. [4] update the weights of each base matcher and
the network parameters after each tracking result. The sparse
representation based trackers [5,6] use the current tracking
patch to replace the older template patch. The correlation
filter based trackers [7,8] use linear interpolation to update
their filters after each frame. However, all these online

adapting strategies suffer from the problem of self-learning,
which means when updated by wrongly labelled samples, the
trackers may degrade permanently and drift away.

Siamese convolutional neural networks [9-12] are
applied to visual tracking in recent years. Siamese networks
have advantageous abilities to learn general matching
functions. Methods in [9-11] show that even with a fixed
template (the ground truth patch in the first frame), the
trackers can achieve state-of-the-art tracking performance.

To avoid drift problem and still benefit from online
adaption, we use conditional GAN architecture [13] to learn
the general appearance distribution that a target may undergo
through a sequence. Then in the tracking phase, we use the
learnt generator of the GAN to generate the target templates.
The generator takes the ground truth patch in the first frame
and random vectors as inputs, and outputs the generated
target templates. The generated templates are pulled by the
ground truth patch, so they will not drift away. Meanwhile,
the generated templates can simulate the possible appearance
changes that a target may undergo through a sequence. When
tracking, we select the generated templates that best suit the
current target appearance. By these strategies, we can update
the target templates online while avoiding drifting.

In this work, we first propose a Siamese matching
network as illustrated in Fig. 1 to match the candidates with
target templates. The Siamese matching network takes
advantages of both low-level local information and high-level
semantic information. Then we propose a task-guided GAN
to learn a generator modeling the general appearance
distribution that a target may undergo through a sequence.
We use the learnt generator of TGGAN to generate templates
and select those best suit the current target appearance, thus
obtaining online adaption and boosting tracking performance.
To our knowledge, this is the first work trying to learn the
general video target appearance distribution using GAN.
Experiments on the well-known OTB benchmark [14] show
that our tracker outperforms many state-of-the-art trackers

2. TASK-GUIDED GAN (TGGAN)

In this section, we describe our TGGAN in details. The
TGGAN includes a generator network and a discriminator
network which consists of an adversarial branch and a task-
guided branch. The task-guided branch (Siamese matching
network) must be well trained in advance to guide the
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Fig. 1. The proposed task-guided GAN. ‘conv’, ‘deconv’ and
‘fc’ stand for convolution, deconvolution (transposed
convolution), and fully-connected layers, respectively. ‘z’
represents the random noise vector. Numbers in square
brackets are kernel size, number of outputs, and stride,
respectively. Note that the two branches of Siamese network
share weights.

learning of the generator network. We alternatively train the
generator network and the adversarial branch of the
discriminator network until the task-guided branch cannot tell
the generated image is target or not.

2.1. Siamese Matching Network

The Siamese matching network is designed to learn a general
similarity function between two images. As shown in Fig. 1,
we concatenate the output feature of conv2, conv3, and conv4
to get the final feature which contains both low-level features
to capture intraclass variations and high-level features to
obtain semantic information. Note that we do not apply any
global pooling or flattening operations to get single global
feature vectors. Instead, we do the matching with every 1 X
1 x 768 feature vector extracted from each 2-D spatial
location. This indicates that the model performs at the scale
of local patches. We first extract the feature along the feature
channel. Then we normalize the extracted features by L2
normalization. Let f;'; and f7%; denote the normalized features
of the two Siamese branches, respectively, where (i,))

denotes the feature vector position in the concatenated feature.

Then the matching score of the two features is simply given
as,

myj = z,le fi,zj' (1
where the superscript T represents transposition. Since the
use of L2 normalization, the matching score m; ; ranges from
-1to 1.

Let p be the label of the input pair. If the two inputs are
of the same object, we consider them as positive pair, then
p = 1. Otherwise, we consider them as negative pairand p =
0. We adopt the margin contrastive loss [15] as the loss
function of our Siamese matching network,

Lij=p(1-m)*+ 1 ~-p)max(0,m;; —€)?  (2)

where € is the maximum margin that the scores of negative
samples should satisfy. In our method, we set € as 0 to make
all the matching scores of negative pairs no more than 0.
Because randomly picked two patches are uncorrelated in
most cases, resulting in a zero matching value. The final loss
of the Siamese matching network is the mean of the losses of
all feature vectors, Lg(Ds(x1,x2)) = X j Li;/N, where N is
the number of feature vectors, D, means the Siamese
matching network, and (x,, x,) are the input sample pair of
D;.

To obtain training samples, we randomly pick two
images from a sequence. Then we extract the ground truth
patch in one image as the template and extract patches in the
other frame around the ground truth patch as candidates. We
calculate IoU (intersection-over-union) rate between the
candidate’s bounding box and the ground truth patch’s
bounding box. Those candidate patches having IoU overlap
rates with the ground truth larger than 0.75, we consider them
as positive. While those patches with IoU overlap rates less
than 0.4, we consider them as negative. The network is
trained using the Adam [15] algorithm with each mini-batch
consisting of 32 positive sample pairs and 96 negative sample
pairs. We train the network 15 epochs and each epoch
consists of 6.25K iterations, where K is the number of
training sequences. The initial learning rate is 0.001 and
multiplied by 0.6 after each epoch.

Note that once Siamese matching network has finished
the training, it should not be updated anymore when training
TGGAN.

2.2. TGGAN

The goal of our TGGAN is to learn a generator that simulates
the distribution of the target appearances that may undergo
through a sequence. The inputs of TGGAN are a target
template patch and a random noise vector. Thus we adopt the
conditional GANs [13] framework. The objective of a
conditional GAN (cGAN) is given as,

Legan(G,Dg) = Ex,y~pdam(x,y) [log D, (x, y)] +
IE:x~pdam(;»c),z»vpz(z) [10g(1 - Da (x' G(x' Z))],
3)



where G represents the generator that learns to map data x
from distribution pguee(x) and z from noise distribution
p,(z) to the distribution over y , and D, means the
adversarial branch. Eq. (3) only includes the adversarial
branch of the discriminator. However, it is well-known that
forcing a model to perform additional tasks will improve the
performance on the original task [16,17] and also we want the
generated images to be qualified for the matching task. Thus,
we guide the generator by adding an additional matching task
of minimizing the Siamese loss,

Lsiam(G!Ds) = L;(Ds(x, G(x, Z))) “4)
Then the final objective is
G* =arg mGin max Locan(G,Dy) + L0 (G, D) (5)

We alternatively train the generator network and the
adversarial branch of the discriminator network. The
adversarial branch is to identify the input pair is real pair or
fake pair. We randomly select two frames from one sequence
and crop the ground truth patches in them, forming the real
pair. For the fake pair, we crop the ground truth patch of a
frame and pass it with a 1024-D random vector through the
generator to obtain a generated patch. The generated patch
together with the input patch form the fake pair. We use
binary cross-entropy loss function for the adversarial branch.
Each mini-batch has 64 sample pairs. The numbers of real
pairs and fake pairs are equal. For the training of generator,
we use losses of both adversarial branch and Siamese
matching branch. Each mini-batch has 64 sample pairs for
each branch. For the Siamese branch, the ratio of positive
pairs and negative pairs is 1:1. We use Adam [18] algorithm
with learning rate 0.0002 as described in appendix A of
ACGAN paper [17]. The network is trained for 10000
iterations when we find that the task-guided branch cannot
distinguish the generated patches from the real ones.

2.3. Implementation Details

Fig. 1 illustrates the network architecture of the proposed
TGGAN. We add batch normalization [19] after all conv
layers except for the first conv layer in the generator and the
first conv layer in the adversarial branch [20]. We use leaky
ReLUs [21] with slope 0.2 as the activation function of each
conv layer except for the output layer of the generator where
tanh function is used. After the last conv layer of the
generator, a full-connected layer is applied to map to a 1
dimensional output, followed by sigmoid function.

3. TRACKING

In every frame, we draw D (= 450) candidate samples from

the image frame according to the state vector Q, = [lx, Ly, S]T,
where subscript t represents the frame number, and [, [, s
denote x, y translations and scale variation, respectively. The
state vector is modeled by the Gaussian distribution, i.e.,
N(Q4 Qp_q1, @), where Q,_q is the estimated target state

vector in the last frame, and ¢ is a diagonal covariance matrix.
And the diagonal elements are (0.2572,0.2572,0.09), where
r is the mean of current target height and width. Extracting
the patch according to the state vectors, we can get a
candidate set C = {cy, C5, ..., Cp}.

We remain a generated template set T9 = {t5, tzg, s t,g(}
which has K(= 10) templates. A coarse-to-fine strategy is
applied in finding the best candidate. In each frame, we first
pass the candidates and the ground truth template in the first
frame through the Siamese network. The matching score is
given as,

M(t,cq) = X ;my;/N, (6)
where t is the ground truth patch in the first frame and d €
{1,2,...,D}.Then we pick out B(= 50) candidates which
have the highest matching scores, forming the coarsely
selected set C° = {cj,c3,...,c5}. Every candidate in C° is
matching to every generated template in TY . The final
matching score of ¢} is given by,

Mfine (tl Tg’ CZ) = O-M(tl CZ) + P Zk M(tg’ CZ)/K’ (7)

where b € {1,2,...,B} . Parameter o and p balance the
contribution of the ground truth template in the first frame
and the generated templates. In our case, we set both values
to be 0.5. The best candidate is picked out by,
¢ = argmax My, (t, TY, cp). (8)
L3
After estimation in each frame, we use the first ground
truth patch and 50 random vectors as inputs of the generator
to generate 50 patches. Then we choose 2 of the patches
which have the highest matching scores with current
estimated target to replace the two in T¢ which have the
lowest matching scores with current estimated target.

4. EXPERIMENTS

This work is implemented using Keras toolbox [22] and
performed on a single NVIDIA GeForce GTX Titan X GPU.
The tracker runs at 3.1 fps. We use sequences in ALOV [23]
and VOT2015 [24] to train the model and evaluate it on
OTB50 [14] and OTBI100 [14]. The OTBS50 is a more
challenging subset of OTB100 and is different from the
OTB2013 [25]. Note that we pick out the sequences that both
exist in the training data sets and test data sets. For convictive
evaluation, we do not use them to train the model. Our tracker
is compared with eight state-of-the-art trackers, including
CFNet_conv3 [12], SINT+ [11], ACFN [26], staple [27],
CNN-SVM [28], SiamFC3s [10], MEEM [29], and DSST
[30]. The CFNet conv3 tracker gets the best overall
performance in all the variants of CFNet [12]. The SINT+
tracker is an improved version of SINT [11]. It uses sampling
strategy in [31] and optical flow to filter out bad candidates.
For ablation study, we compare the proposed TGGAN tracker
with its variant which only uses the template from the first
frame and does not use the generated online adaptive
templates. We name this variant FixedT. The templates and



Table 1. AUC score of different tracking methods in terms of different attributes on the OTB100 dataset. The best three

results are shown in red, blue, and green fonts.

CNN-

SiamF-  CFNet_

Attribute DSST MEEM ACFN staple FixedT SINT+ TGGAN
SVM C3s conv3

0oCC 0.449 0.508 0.514 0.537 0.545 0.526 0.582 0.582 0.589
DEF 0.415 0.492 0.547 0.533 0.552 0.510 0.524 0.587 0.597
FM 0.447 0.542 0.546 0.562 0.537 0.568 0.555 0.581 0.609
v 0.556 0.522 0.537 0.567 0.596 0.574 0.542 0.636 0.614
Sv 0.466 0.472 0.489 0.547 0.522 0.556 0.546 0.599 0.622
MB 0.469 0.556 0.562 0.546 0.550 0.540 0.591 0.591 0.630
BC 0.523 0.519 0.548 0.573 0.523 0.561 0.555 0.590 0.576
LR 0.383 0.364 0.403 0.425 0.418 0.592 0.536 0.521 0.594
IPR 0.502 0.529 0.548 0.543 0.552 0.557 0.560 0.599 0.576
OPR 0.470 0.525 0.548 0.543 0.534 0.558 0.556 0.598 0.603
oV 0.386 0.488 0.488 0.496 0.481 0.506 0.456 0.553 0.582
Overall 0.513 0.530 0.554 0.573 0.581 0.582 0.589 0.606 0.618
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Fig. 2. First row and second row are the precision plots and
success plots of OTB50 and OTB100, respectively. The
legend in the success plots reports the AUC scores. The
legend in the precision plots reports the percentage of frames
within the threshold of 20 pixels.

candidates are all resize to a fixed size 32 X 32. We use
success plots and precision plots of OPE [14] to evaluate our
tracker as illustrated in Fig. 2. The legend in the precision
plots reports the percentage of frames whose distance
precision is below 20 pixels. The legend in the success plots

shows the area-under-curve (AUC) scores of the success plots.

We can see that our proposed TGGAN achieves the best
performance in terms of both precision score and AUC score
on both OTB50 dataset and OTB100 dataset. It is worth
noting that the FixedT tracker performs the second best in
terms of the AUC score. This indicates the effectiveness of
our Siamese matching network architecture. The output
features obtain both low-level local information and high-
level semantic information by concatenating the conv
features of conv2, conv3, and conv4 layers. Meanwhile, we

separately match the features from different location. This
local patch based operation helps the model achieve
robustness. In the precision plots, the FixedT performs worse
than TGGAN and some other trackers. This verifies the
effectiveness of the generated templates improving the
tracking accuracy.

Table 1 illustrates the AUC score of different trackers in
terms of different tracking attributes on the OTB100 dataset.
The attributes include occlusion (OCC), deformation (DEF),
fast motion (FM), illumination variation (IV), scale variation
(SV), motion blur (MB), background clutters (BC), low
resolution (LR), in-plane rotation (IPR), out-plane rotation
(OPR), and out-of-view (OV). In eight of the eleven attributes
our tracker achieves the best AUC scores. In IV, BC, and IPR,
our tracker obtains the second best AUC scores. The overall
performance indicates that the proposed TGGAN tracker can
deal with various challenging tracking scenarios.

5. CONCLUSION

In this paper, we propose a robust Siamese matching network
and a task-guided GAN for visual tracking. The proposed
Siamese network takes advantages of both low-level local
information and high-level semantic information. Meanwhile,
the matching is performed at the scale of local patches for
robustness. The task-guided GAN network tries to model the
appearance distribution that a target may undergo through a
sequence. After the training of TGGAN, we use the generator
to generate templates that best suit the current target
appearance. Since the templates are generated from the
ground truth template in the first frame, they are robust and
can alleviate the drift problem, while still catching adaptivity.
Numerous experiments show the effectiveness of the
proposed Siamese matching network and the task-guided
GAN.
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